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An array of long, vertically uniform salt fingers in an environment with salt input 
from above, fresh input from below, a vertically constant, stabilizing temperature 
gradient and negligible salt diffusion is found to be unstable to perturbations with 
vertical structure. The maximrim growth rate and the form of the instability are 
derived for fingers with widths that yield maximum buoyancy flux in the 
unperturbed state. The dependence of the instability on the magnitude of the 
imposed salt difference is obtained for the heat-salt system. A direct (non- 
oscillatory) mode with a vertical scale of the orderrof the buoyancy-layer thickness 
is the most unstable when the amplitude of the vertical velocity of the fingers is large. 
The instability is due to the shear flow between rising and sinking fluid in adjacent 
fingers and is relatively unaffected by the perturbation buoyancy. When the driving 
is weaker, the dominant instability involves the same processes as for the basic 
fingers, i.e. perturbation buoyancy, viscosity and diffusion, and the mode becomes 
oscillatory in time. All of the most unstable modes derived here have a vertical scale 
of the order of the buoyancy-layer thickness. Both the direct and the oscillatory 
modes have net horizontal flows that vary with the vertical coordinate and time and 
in finite amplitude could cause the fingers to incline toward the horizontal. The 
oscillatory mode involves pairs of fingers so the emerging behaviour could include a 
kind of period doubling. 

. 

1. Introduction 
Salt fingers are generated when warm, salty water lies above cool, fresh water and 

the relationship, Rp7 < 1, is satisfied (Stern 1960). Here, Rp is the density ratio of the 
stabilizing temperature gradient (aq) or  difference (aAT) to the destabilizing salt 
gradient (/3Rz) or difference (BAAS) and 7( < 1) is the ratio of salt diffusivity to that of 
temperature. 

These long, slender features can arise from a variety of initial configurations. A 
commonly assumed initial state is one with a layer of uniformly warm, salty water 
above a layer of cold, fresh water, the two separated by an interface. Laboratory 
experiments, e.g. in a H e l d h a w  cell (Taylor & Veronis 1986), may start with a 
physical barrier between the layers. In nature and in some laboratory studies a 
lateral intrusion of warm, salty water into a cold, fresh environment will give rise to 
salt fingers at  the base of the warm, salty layer..Initially, very thin fingers are 
generated almost instantaneously and create a salt-finger zone of approximately 
1-2 cm in height, in which the stabilizing mean temperature gradient is essentially 
uniform in the vertical. As the height of the zone increases, the mean vertical 
temperature gradient decreases and the optimal width of the fingers increases 
( -  (aT/az)-f, see below). In  the Taylor & Veronis (1986) experiments new fingers 
were continually formed at the outer edges of the finger zone where the temperature 
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gradient is small (so that  the finger width is larger). These fingers penetrated into the 
finger zone, displacing narrower fingers. 

The evolution of such a system depends strongly on the size of the destabilizing 
density anomaly associated with the salinity difference, Ah'. If A S  is large, the fluid 
will flow rapidly through the finger and will deposit the relatively large salt anomaly 
at the edge of the finger zone, so that a destabilizing density layer is formed giving 
rise to active, convective layers in the reservoirs above and below. In  such a case the 
fluid may move through the fingers so rapidly that no instability has time to grow 
significantly and the system will evolve with time, unaffected by any instabilities. 
Here, a salt-finger zone sandwiched between two convecting layers would be a stable, 
evolving system until the fingers become long and potentially unstable. 

When Af3 is smaller or the finger length is large enough, the fluid will take more 
time to traverse the finger zone and instabilities may have time to  alter the fingers. 
Salt diffusion, which tends to redistribute the salt anomaly laterally, will thereby 
decrease the buoyancy anomaly (and therefore, the vertical velocity) in the fingers 
and allow the instability time to  manifest itself. The evolution of the system in this 
case is more complicated because it will depend on how the finite-amplitude salt 
fingers alter the mean background gradients. 

A second initial configuration is one with a layer of smooth temperature and 
salinity gradients sandwiched between the reservoirs. The layer may be deliberately 
produced or it may emerge from the mixing that occurs when one tries to  generate 
two layers by pouring the (lighter) warm, salty water onto the top of the cold, fresh 
layer. In  almost all of these situations the mixing does not create vertically smooth 
gradients but rather a layer with homogeneous patches of fluid each of which has 
different T , S  properties. When such a patchy layer was generated in the Taylor & 
Veronis (1986) experiments, salt fingers appeared in isolated areas (presumably, a t  
the base of the warm, salty patches). Gradually, the fingers merged with other fingers 
above and below until after a considerable time the entire mixed layer was filled with 
a very regular pattern of salt fingers. 

Another set-up, a combination of the two mentioned above, is to  start with a two- 
layer system and to continue to maintain fixed concentrations in the two reservoirs. 
The thickness of the salt-finger zone will adjust by itself to an appropriate value and 
remain constant. 

Models of salt fingers assume one of the configurations mentioned above. When the 
background consists of a relatively stable temperature gradient and a mildly 
destabilizing salt gradient (7Rp near l ) ,  the fingers are vertically long, the fluid 
velocities are small and the system evolves slowly. Therefore, there must be 
significant horizontal diffusion of salt between up- and down-going fingers. Stern 
(1975) analysed a pattern of fingers using this idea. 

When the initial state is two-layered and the destabilizing salt difference, Ai3, is 
much greater than that required for marginal instability (Rp7g < 1,  Huppert & 
Manins 1973), fingers evolve very rapidly and the destabilizing property is very 
nearly uniform in a finger. I n  this case it is more appropriate to analyse the system 
assuming that the horizontal distribution of salt is $AS in sinking fingers and -+AS 
in rising ones. 

Howard & Veronis (1987, hereafter referred to as HV) calculated the horizontal 
distributions of vertical velocity, w,  and temperature, T ,  based on such a salinity 
distribution and a constant mean temperature gradient, q. Their zero-order model 
assumed the fingers to be very long compared to the width, and the diffusion of salt 
to be negligible. The analysis showed that the finger width must be small enough to 
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allow the stabilizing temperature to diffuse horizontally between up- and down-going 
fingers so that the destabilizing salinity can drive salty (fresh) fluid downward 
(upward). The horizontal scale, L, of the fingers is given by ( 4 ~ ~  v/gaZ)f ,  where K~ 

is the thermometric diffusivity, u is the kinematic viscosity and g is the acceleration 
due to gravity. 

This scale was first derived by Prandtl (1952), who showed that in a stably 
stratified fluid a sidewall boundary layer allows a smooth transition between the 
temperature of the inviscid interior and the value imposed a t  the wall. Horizontal 
diffusion of temperature and vertical velocity balances the vertical advection of 
mean temperature and the gravitational term respectively in this ‘buoyancy layer ’. 
Stern (1960) showed that the same horizontal scale determines the width of salt 
fingers with maximum growth rate in a fluid with imposed temperature and salinity 
gradients. In all of these situations horizontal diffusion serves to diminish the 
stabilizing effect of the mean temperature gradient. 

Stern’s (1969) original study of the stability of salt fingers employed the same 
assumptions that HV made but he chose a horizontally sinusoidal distribution of 
salt. When he summarized the salt-finger problem in his book (Stern 1975), he used 
a vertical salt gradient instead of a salt difference and incorporated horizontal salt 
diffusion into the analysis. Because the solutions for the two models have the same 
form, it is commonly assumed that the models are identical. Yet what Stern (1969) 
calls an equilibrium model is really an approximate version of the HV model. 

The steady solutions for w and T obtained by HV are proportional to the 
parameter, Q = PAS/LaTz, where L is the buoyancy-layer thickness. If the 
temperature gradient is rewritten as = AT/H, where H is the height of the salt- 
finger zone, Q becomes (H/L) (PASlaAT) = (HIL) (l/Rp), where Rp 2 1 for salt 
fingers. Thus, Q contains information about both the density ratio and the aspect 
ratio, H/L, of the fingers. Recall that in a system evolving from an initial two-layer 
state the vertical temperature gradient will gradually diminish as the fingers 
lengthen and the finger width will accordingly increase. Therefore, if the HV model 
is taken to be an acceptable approximation to such an evolving system at any given 
time, the parameter Q will grow (parametrically with time) like I8 (since L - H i ) .  

In  this paper we investigate the stability of these quasi-steady salt fingers. A 
stability analysis will help to determine the conditions under which salt fingers can 
continue to exist as entities. However, there are certain stages in the evolution of 
fingers in which stability is not the issue. That must be true during the initial phase 
of a two-layer configuration when fingers grow rapidly and keep changing. Even so, 
it will help to know under what conditions an instability can occur and the form that 
it will take. 

The parameter Q appears in the stability analysis also. Since the fingers are 
assumed to be long, the ratio H/L is always large so Q is large if Rp is near unity. 
Values of Q near unity are possible only for a very stably stratified fluid (Rp x H / L ) .  
In such a case, the vertical velocity in the background fingers will be slow and the 
effect of salt diffusion may become significant so that the zero-order HV model would 
have to be modified. However, very few laboratory experiments have been carried 
out with large Rp. Furthermore, the range of Rp of oceanographic interest is from 1 
to 3 and areas with evidence of significant salt-fingering activity have Rp x 1.6. 
Hence, for long fingers the interesting range is that of large Q. If the fingers are short 
(H/L x l ) ,  a basic assumption of the HV model is violated and the variation in z 
should be taken into account. Probably the only realistic hope is to tackle that 
system numerically. 
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The next section includes a brief derivation of the HV zero-order model and the 
formulation of the stability problem. Section 3 reports the results of the stability 
analysis. A discussion of the implications of the analysis concludes the paper. 

2. Mathematical formulation 

Boussinesq fluid are 
The conservation equations for vorticity, heat and salt in two dimensions for a 

(a, - vV2) V 2  Y + gaT, - gpS, = - u VV2 Y, ( 2 . 1 4  

(a,-KSv2)s = -u.ws, ( 2 . l c )  

(a, - K T  V2) T- Yz = - U *  WT, ( 2 . l b )  

where v denotes kinematic viscosity, KT thermometric diffusivity, K~ salt diffusivity, 
pa = -ap/aT, pp = ap/aS, denotes the mean temperature gradient, and 

In (2 .1)  the temperature has been divided into a value, T ,  varying linearly in z,  and 
the remaining part, T .  The salinity is the departure from the (constant) mean value 
in the finger zone. The definition for the stream function is in the definition of v.  

u = (u, w) = ( Yz, - Y,). 

The variables are non-dimensionalized with 

where L is the buoyancy-layer thickness. The dimensionless equations (without the 
primes) become (a, - aVZ) V2Y+ 2aT, - 2aQS, = - V -  WV2Y, ( 2 . 2 4  

( a , - V 2 ) T - 2 Y x  = - v - V T ,  (2 .2b)  

where T = K s / K T ,  CT = V / K T ,  Q = pAS/aLz .  Because of the choice of L ,  the Rayleigh 
number, R = gaT L 4 / v ~ , ,  does not appear explicitly. However, the ratio of the salt 
to the thermal Rayleigh numbers appears in &. As mentioned in the introduction, 
when T is replaced by A T / H ,  the aspect ratio, H I L ,  also appears explicitly in Q. 

2.1. The small-.r approximation 

The salt-finger model in HV assumes 7 = 0 at zero order and a salt difference, AS, 
across the finger zone. The salinity is taken to be $AS in descending fingers and -+Ah' 
in ascending ones. With a/& = 0 so that u = 0, the above equations become 

( a t - T v 2 ) s  = -v.vs, (2.2c) 

1 
- wt - w,, - 2T = 2Q, ( 2 . 3 ~ )  

T,-TZ,+2w = 0, (2 .3b)  

where Q = pAS/aLq in the region 0 < x < xb (xbL is the dimensional finger width). 
Q changes sign in -xb < x < 0 and the system has periodicity 2xb. 

All solutions to these equations approach the following steady state (subscript s) 
in 0 < x < xb (which is thus stable with respect to perturbations independent of z )  : 

(2 .4a)  
sinh x sin (xb - x) + sin x sinh (xb - x )  

cosh xb + cos xb 

--I). (2.4b) 

a 

l9 w, = - i 
cash x cos (xb - X) + cos z cash ( ~ b  - x )  

cosh xb + cos xb 
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FIQURE 1.  (a )  The original, square-wave profile with S = 1 in the range 0 < z < xb = 1.7.  Also 
shown is the smoothed salinity profile obtained with y = 20 (in (2.8)) for a finger in the region 
0 < 2 < xb. (b )  The vertical velocity generated by the square S superimposed on the vertical velocity 
due to the smoothed S in (a) .  The two w are essentially coincident. (c) As in (b )  but for temperature. 

X 

In the range -nb < x 6 0, Q is replaced by - Q  (w and T change sign) and nb-x is 
replaced by nb + x.  In  HV it was shown that the buoyancy flux achieves its maximum 
value of 0.251 for b = 0.542. The solutions w, and T, for this case are shown in figure 
1 ( b )  and 1 (c) respectively. 

Although a correction for S due to small salt diffusion is given in HV, we shall here 
restrict our attention to the stability of the configuration described by the zero-order 
solution (2.4). 

2.2. Stability problem 
When perturbations T(z ,  z, t ) ,  S(x ,  z,  t ) ,  Y(x ,  z ,  t )  are added to the steady solution the 
linear equations for T ,  9, and Y take the form 

V2 Yt = aV4 Y - 2uT, + 2aQS, + w,,, Yz - w, V2 YZ, ( 2 . 5 ~ )  

= V2T+2Yz-T,, Yz-wwsT,, (2.5b) 

s, = -s,, Yz-wwssz. ( 2 . 5 ~ )  
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Since the coefficients are spatially periodic functions, this system can be solved using 
Floquet theory by substituting 

N 

(Y, T, S) = C ( Y,, iT,, iS,) exp {At+i[mz+ ( k + n )  x ] / b }  ( 2 . 6 )  
n--N 

in the region -nb  < x < nb, where i k / b  is the (Floquet) characteristic exponent. (It 
is convenient to write the Fourier coefficients for T and S as iT, and is,.) The 
equations that the component coefficients must satisfy are 

( 2 . 7 ~ )  

where K j  = [ ( k + j ) 2 + m 2 ] / b 2 ,  n1 = n - j - b ,  n2 = n - j + b ,  and the summation z‘ 
extends over odd values of n - j .  The infinite system is invariant under the 
transformation k + -  k and k + 1 + k. However, for finite N ,  when k is replaced by 
either l + k  or -k, the series loses its symmetry and the value of A is altered. 
Furthermore, an even value of N leads to a solution for A that differs from that 
obtained with odd N .  These discrepancies are particularly highlighted in this problem 
because S, has a finite discontinuity a t  the boundaries x = nnb, n = 0, f 1 ,  2 ,  . . . , 
where the Fourier representation for S, exhibits a Gibbs phenomenon and aS,/ax is 
a Dirac delta function with constant Fourier coefficients. 

We get around this difficulty by smoothing the discontinuity of the steady salinity 
using the convenient form 

1 + e - ~ n b  - e - ~ z  - e-y(”b-s) - cash ( h n b )  - cash y ( x - + n b )  s =-  - -~ 
1 +e-”b-2(1-ee-”b)/ynb cosh (+-ynb)-2 sinh(hnb)/ynb’ 

0 < x < nb, 
1 + e-ynb - eYz - e-y(nb+s) 

( 2 . 8 ~ )  

- cosh ( b n b )  - cosh y ( x  +$b) S, = 
1 +e-Fb-2(1 -e-Fb ) / y x b  - cosh (iynb) - 2 sinh ( h n b ) / y n b  ’ 

(Essentially, the smoothed S, incorporates an effect similar to that of small salt 
diffusion. For the case with r = 0, S, in the basic problem appears only as a forcing 
function in the vorticity equation. Any form which is a function of x alone satisfies 
the convective salinity equation since u = 0.) 

As y + 00 this expression approaches - 1 in 0 < x < nb and + 1 in - nb < x < 0. A 
finite value of y smooths out the discontinuities in S, as shown in figure l ( a )  for 
y = 20. However, the vertical velocity and temperature fields are practically 
unaffected by the value of y (for y 2 15) as can be seen in figures 1 ( b )  and 1 ( c ) .  
(Because w, and T, vanish where S, changes sign, the effect of the discontinuity in the 
salinity is very small near those points.) Therefore, for the stability problem the 
forms in (2.4) have been used for w, and T,, even though the salinity has been 

-nb  < x < 0. (2 .8b )  
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smoothed with y = 20. Eliminating the discontinuity in S, also eliminates the large 
amplitude at wavenumber N so that expansions with even and odd N tend toward the 
same value of A as N becomes large. 

3. Results of the stability calculations 
For all calculations the value of the Prandtl number, r ~ ,  was 7 (corresponding to 

salt water), and the parameter, b,  was 0.542, the value that yields maximum 
buoyancy flux for the basic finger solution. For each value of Q calculations were 
made for 0 < m < 3 and 0 < k < 1 in increments of 0.05 to determine the specific 
values of m and k that  lead to  maximum growth rate. I n  the neighbourhood of the 
maximum value of A increments of 0.01 were used. The values of A varied smoothly 
with k ,  m and Q. 

The number of horizontal wavenumbers required for a convergent solution 
depends on the value of &. For Q 2 10 a value ofN = 40 suffices to give Re ( A )  correct 
to at least three significant digits. That means that Re(A) changes by less than 
lOP3Re ( A )  when k is replaced by 1 + k or by - k or when N is increased to  50. (Recall 
that  for N = GO the system is invariant to k+ 1 + k or k +- k . )  With Q = 1 it is 
necessary to use N = 140 to obtain values of Re ( A )  that change by as little as 1 % 
when k+ 1 + k or k +- k or 130 < N < 139. 

Q = 0.1 requires an even larger value of N .  Results are reported below only for 
Q 1. Since the basic fingers are required to be long and narrow for the validity of the 
present analysis, values of Q below 1 are achieved only when the stability parameter, 
R,, is large (> H / L ) .  That would take the system out of the range of physical interest 
(and even out of the range of possibility, since R, cannot exceed 7-l for long fingers). 

Table 1 contains a summary of the values of the important parameters, N ,  K ,  M ,  
and A ,  for several values of Q. In  all cases with Q 2 CT maximum growth occurs with 
A real and with zero for the characteristic exponent, k. Asymptotically, h + 0.3Q and 
m+0.68,  so the total vertical wavenumber (mlb) settles to 1.25. Thus, a full vertical 
wavelength of the unstable mode is about 1.5 times the wavelength of a pair of fingers 
(one up and one down). Since the buoyancy-layer scale was used to non- 
dimensionalize the spatial coordinates, this means that the vertical scale of the 
preferred mode is of the order of the buoyancy-layer thickness. 

The basic vertical velocity (proportional to Q )  is large in this asymptotic limit and 
the instability is due to  the large shear between rising and falling fluid in adjacent 
fingers. To test the importance of the density for the perturbation velocity the 
Prandtl number was set to zero for the case Q = 1000, thereby removing both T and 
S from the vorticity equation. The effect on A was negligible; the growth rate 
changed by 1% and the alteration in the stream function was undetectable. 
Essentially this is an unmodified shear-flow instability. (We obtained the same 
asymptotic results without Floquet theory by numerical integration of the vorticity 
equation with periodic boundary conditions in x and with no buoyancy term.) 

Qualitatively, the system behaves in the same way for values of Q down to 
r~ (=  7). Figure 2 shows Ys+0.5Y (both Ys and Y are normalized) for Q = 1000 and 
30. The two graphs are nearly the same. (The abscissa is scaled by blm, so the real 
vertical distances in the two graphs differ by about 25%.) 

The perturbation stream function for these large values of Q has a net horizontal 
flow a t  any given value of x ,  as shown in figure 3 (a) for Q = 30. The flow pattern given 
by Y+ 5 Y, is strongly inclined to the horizontal in thin bands as shown in figure 3 ( b ) .  
Of course, as the perturbation grows it must alter the background mean field; 
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FIGURE 2. (a) Contours of Y8+0.5Y for the most unstable mode (Q  = 1000, k = 0, m = 0.68) in a 
region extending one wavelength in x and one in z .  ( b )  As in (a) but for Q = 30, k = 0, m = 0.55. 
The (nearly identical) pattern of flow in (a) and (b )  represents the most unstable mode for Q > u. 

Q N k m  A 

1 140 0.5 0.55 0.0121+0.363i 
10 40 0 0.40 1.274 
10 40 0.5 0.55 1.063f3.3041 
30 40 0 0.55 6.308 
loo 40 0 0.65 27.44 
lo3 40 0 0.68 301.6 
lo4 40 0 0.68 3034.0 

TABLE 1. Values of N ,  k, m and A for modes with maximum growth rate 

therefore, this simple superposition is meant only as an indication of the type of 
effect that the instability may have. Also, these are instantaneous streamlines (not 
particle paths) and may not represent the actual flow of the fluid. A full analysis 
would treat the interaction of mean and perturbation. It is interesting that 
attempted observations of salt fingers in the CSALT expedition revealed a striated 
pattern that was more horizontal than vertical (Kunze, Williams & Schmitt 1987). 
It is a t  least possible that the instability derived here may lead to more horizontally 
inclined features in the fully developed system. 

A plot of ps + 2p, with p and ps normalized, is depicted for Q = 30 in figure 3 (c ) .  The 
perturbation density has its largest amplitude near the sidewalls of the fingers. That 
appears to be a characteristic feature of the perturbed fingers (see also figure 4b) but, 
as mentioned earlier, the density plays no role in the instability when Q is large. 

When the value of Q is dropped to 10, the mode with the maximum growth rate 
is still of the same type as described above. However, the next fastest growing mode 
occurs for k: = 0.5, m = 0.55 and h is complex with Re(h)  only 20% below the 
maximum value. (This mode becomes the dominant one for Q < (T. i.e. when the 
effects of diffusion become more important than those due to advection.) The flow 
pattern for Ys+0.5Y at zero phase is shown in figure 4(a )  for the region 0 < x < 41tb 
(two up and two down cells) and for two wavelengths in z. This pattern travels 
vertically downward (the behaviour is like exp [i(mz/b & hit)] for the mode with &hi). 
The case with +A, is depicted in figure 4 ; it has a wavy downward velocity and a 
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FIGURE 3. (a) Contours of the perturbation stream function, Y, for Q = 30, k = 0, m = 0.55. The 
pattern is periodic in x and z. There is a net horizontal flow at each level of z. (b )  Contours of !Ps + 5Y 
for the same case show a band of flow from right to left (hatched upper) and from left to right 
(hatched lower). (c) A few contours of p,+2p for the same case. A positive (negative) density 
anomaly is indicated by + ( - ). 

more uniform upward flow with closed circulation contours in between. Contours for 
the density field, p,+2p, are shown in figure 4(b) .  Maximum and minimum density 
values are marked + and -. Vertical flow is inhibited where the density is 
maximum. 

When Q = 1 the mode with maximum growth rate has complex A with k = 0.5 and 
m = 0.55. The perturbation stream function for the two modes (with both +A, and 
-A , )  forms a standing wave pattern which is shown in figure 5 ( a )  for 0 < x < 4nb and 
for two wavelengths in z. The pattern is periodic in x so there is a new flow to the right 
or left depending on the value of z. This perturbation flow oscillates in time. 

A plot of the composite stream function, Ys+0.5( Y(A)+ Y(A*)), appears in figure 
5 (b) .  The bands of unidirectional horizontal flow are modified by the mean velocity, 
w,. Because the perturbation has a carrier wave with twice the wavelength of the 
basic velocity, the same structure appears in the composite flow. There is some 
indication from numerical experiments that there is a period doubling in the pattern 
of fluid emerging from a salt finger zone, i.e. just above and below the finger zone the 
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FIGURE 4. (a) Contours of Ys+0.5Y for the  travelling wave mode when Q = 10, k = 0.5, m = 0.55. 
The flow is down along the wavy contours and up  along the straighter ones. With k = 0.5 a full 
wavelength in x corresponds t o  two wavelengths of the steady flow Ys. The vertical range extends 
two wavelengths in z .  (b) Contours of p,+2p for the same case. A positive (negative) density 
anomaly is indicated by + ( - ). 

FIQURE 5. (a) The composite perturbation stream function, Y(A) + cY(A*), for the most unstable 
mode (k = 0.5, m = 0.55) when Q = I .  The horizontal range is one wavelength (two wavelengths of 
the steady flow) and the vertical range extends two wavelengths in z. Note the  net horizontal flow 
either to  the right or to  the left at each value of z. The amplitudes oscillate with time. (b) 
!Ps+0.5(!P(A)+ Y(A*)) for the same case showing time oscillating, net horizontal flow as a function 
of z. 

number of fingers protruding into the reservoirs is half the number of fingers in the 
zone itself and the spacing is double. 

As pointed out in the introduction, a value of Q near 1 for these long fingers means 
that the system is very stably stratified (R,, % 1 )  so the fluid moves slowly through 
the fingers and the effects of diffusion are important. 

4. Discussion and conclusions 
Our analysis concludes that the steady salt fingers derived by Howard & Veronis 

(1987) for 7 < 1 are unstable for all of the parameter range explored. If the stabilizing 
temperature difference has an effect on the density that is close to  that of the 
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destabilizing salinity difference (R,, x i),  the most unstable mode grows without 
oscillation and has a vertical scale comparable to the buoyancy-layer thickness. For 
a very stably stratified fluid (RP x HIL % 1) the most unstable mode has a somewhat 
smaller vertical scale but encompasses pairs of salt fingers, i.e. there is a kind of 
period doubling. In both situations the instability introduces a mean horizontal 
circulation that could cause the fingers to incline toward the horizontal. How 
effective the instability is in generating more horizontally oriented features is, of 
course, beyond the domain of linear theory. 

We do not know how pertinent a stability analysis is to the salt-finger system. 
Very thin fingers form nearly instantaneously from an initial two-layer con- 
figuration. During this short period it is likely that the system is more appropriately 
described in terms of rapid transients. However, after this initial evolution the 
stability analysis for large values of Q should be pertinent and the system should 
become unstable to the direct modes shown in figure 3 (a).  Observations made during 
the Hele-Shaw cell (Taylor & Veronis 1986) experiments indicate that the instability 
equilibrates and leads to a corrugation of the fingers. As the system evolves, there is 
a continuing penetration of thicker fingers from the outer edges of the finger zone. 
These would gradually replace the corrugated fingers that are present but the newer 
fingers would themselves become unstable and corrugated. This sequence would be 
repeated as the thickness of the finger zone grows. Although the interaction of the 
fingers with the reservoirs above and below is not treated here, it is clearly going to 
affect the finger region itself, particularly if the salinity anomaly deposited in the 
reservoirs by the fingers is large and causes very active convection. That problem will 
require a treatment quite different from the one in this paper. 

Our results may appear to differ from Stern’s (1969) conclusion that the salt-finger 
system admits a collective instability. However, we have reported only the most 
unstable mode. There are many additional unstable modes, some with small k and 
therefore involving several fingers, but they have substantially smaller growth rates. 
If the (smaller scale) instability that we have derived here were to equilibrate at  finite 
amplitude without changing the basic structure of the system significantly, one of 
the slower growing modes could become the dominant one. 

Unfortunately, there are few laboratory studies with sufficient detail to reveal the 
existence of instabilities of the type derived here. The only evidence that we have of 
a disturbance with a vertical scale that of the buoyancy layer is from the Hele-Shaw 
cell experiments of Taylor & Veronis (1986) shown by Veronis (1987). For that 
experiment the disturbance resembling the one derived here appears to equilibrate 
at  finite amplitude and the salt fingers look corrugated. 

Most two-layer experiments with salt fingers (e.g. Turner 1973, plate 8.8) have 
large PAS so that the fingers that form appear irregularly wavy and the buoyant 
blobs that are deposited at  the edges of the finger zone help to generate relatively 
active convective motions in the reservoirs. The convection interacts with the finger 
zone and may be so violent that the thickness of the finger zone becomes very small, 
not much bigger than a finger width. The larger-scale convective motions sweep 
away the buoyant blobs and the concomitant shear of the horizontal velocity can tilt 
the fingers toward the horizontal. When that happens, the basic configuration of the 
HV model is not realized and the stability analysis is not appropriate. 

Even when PAX is large, as long as the overall density stratification is stable, the 
only way that the system can draw on the potential energy of the destabilizing salt 
is for diffusion to reduce the effect of the stable temperature field. Therefore, the 
horizontal scale of the basic disturbance must be of the order of the buoyancy layer 



522 L. N .  Howard and G. Veronis 

and the basic balance of the HV model will be important even though vertical 
variations may also contribute quantitatively. We have not tried to analyse the 
system with variation in the z-direction. 

Eventually we would like to have an analysis that would be appropriate for 
oceanic observations. Several oceanographic expeditions have been undertaken to 
observe salt fingering in the ocean. The most ambitious was the CSALT expedition 
(Schmitt et al. 1987). The staircase structure showing layers with uniform T and S 
sandwiched between finger zones with uniform gradients of T and S is persistent east 
of the Caribbean, but local measurements did not reveal identifiable salt fingers 
(Kunze et al. 1987). The data distributed by the CSALT group are a t  1 m intervals 
in the vertical, much too coarse to confirm the existence of individual salt fingers. 
Even so, the available measurements indicate a value of Rp around 1.6 over a 300 m 
depth interval. If long fingers exist, the direct instability derived above is pertinent. 
But if the ‘fingers’ are short, the fluid would traverse the finger zone before an 
instability could manifest itself and the stability analysis is not applicable. In that 
case, the system is probably best described in terms of an interaction of the reservoirs 
across a short transition region in which the HV model-balance releases the potential 
energy of the salt distribution as mentioned in the previous paragraph. 

The work reported here should help to interpret results of a numerical study by 
Colin Shen of NRL. He has generated a regular array of salt fingers by suppressing 
perturbations and has also obtained a rather chaotic configuration from noisy initial 
conditions. It may be possible to relate the destabilizing elements to the modes 
derived here. 
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